skip to main content


Search for: All records

Creators/Authors contains: "Zehr, Jonathan P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Dinitrogen (N2) fixation is carried out by specialized microbes, called diazotrophs, and is a major source of nitrogen supporting primary production in oligotrophic oceans. One of the best-characterized diazotroph habitats is the North Pacific Subtropical Gyre (NPSG), where warm, chronically N-limited surface waters promote year-round N2fixation. At Station ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the NPSG, N2fixation is typically ascribed to conspicuous, filamentous cyanobacterial diazotrophs (TrichodesmiumandRichelia), unicellular free-livingCrocosphaera, and the UCYN-A/haptophyte symbiosis, based on using microscopy and quantitative PCR (qPCR). However, the diazotroph community in this ecosystem is diverse and includes non-cyanobacterial diazotrophs (NCDs). We investigated the diversity, depth distributions, and seasonality of diazotroph communities at Stn. ALOHA using high throughput sequencing (HTS) ofnifHgene fragments from samples collected throughout the euphotic zone (0-175 m) at near-monthly intervals from June 2013 to July 2016. The UCYN-A symbioses andTrichodesmiumsp. consistently had the highest relative abundances and seasonal patterns that corroborated qPCR-based analyses. Other prevalent community members included a newCrocosphaera-like species, and several NCDs affiliated with γ- and δ-proteobacteria. Notably, some of the NCDs appear to be stable components of the community at Stn. ALOHA, having also been reported in prior studies. Depth and temporal patterns in microdiversity within two major diazotroph groups (Trichodesmiumand UCYN-A) suggested that sub-populations are adapted to time- and depth-dependent environmental variation. A network analysis of the upper euphotic (0-75 m) HTS data identified two modules that reflect a diazotroph community structure with seasonal turnover between UCYN-A/Gamma A, andTrichodesmium/Crocosphaera. It also reveals the seasonality of several important cyanobacteria and NCDs about which little is known, including a putative δ-proteobacterial phylotype originally discovered at Stn. ALOHA. Collectively, these results underscore the importance of couplingnifHgene HTS with other molecular techniques to obtain a comprehensive view of diazotroph community composition in the marine environment and reveal several understudied diazotroph groups that may contribute to N2fixation in the NPSG.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. Abstract

    Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.

     
    more » « less
  4. Abstract

    Biological nitrogen fixation is a major important source of nitrogen for low-nutrient surface oceanic waters. Nitrogen-fixing (diazotrophic) cyanobacteria are believed to be the primary contributors to this process, but the contribution of non-cyanobacterial diazotrophic organisms in oxygenated surface water, while hypothesized to be important, has yet to be demonstrated. In this study, we used simultaneous15N-dinitrogen and13C-bicarbonate incubations combined with nanoscale secondary ion mass spectrometry analysis to screen tens of thousands of mostly particle-associated, cell-like regions of interest collected from the North Pacific Subtropical Gyre. These dual isotope incubations allow us to distinguish between non-cyanobacterial and cyanobacterial nitrogen-fixing microorganisms and to measure putative cell-specific nitrogen fixation rates. With this approach, we detect nitrogen fixation by putative non-cyanobacterial diazotrophs in the oxygenated surface ocean, which are associated with organic-rich particles (<210 µm size fraction) at two out of seven locations sampled. When present, up to 4.1% of the analyzed particles contain at least one active putative non-cyanobacterial diazotroph. The putative non-cyanobacterial diazotroph nitrogen fixation rates (0.76 ± 1.60 fmol N cell−1d−1) suggest that these organisms are capable of fixing dinitrogen in oxygenated surface water, at least when attached to particles, and may contribute to oceanic nitrogen fixation.

     
    more » « less
  5. Hatzimanikatis, Vassily (Ed.)
    Marine nitrogen-fixing microorganisms are an important source of fixed nitrogen in oceanic ecosystems. The colonial cyanobacterium Trichodesmium and diatom symbionts were thought to be the primary contributors to oceanic N 2 fixation until the discovery of the unusual uncultivated symbiotic cyanobacterium UCYN-A ( Candidatus Atelocyanobacterium thalassa ). UCYN-A has atypical metabolic characteristics lacking the oxygen-evolving photosystem II, the tricarboxylic acid cycle, the carbon-fixation enzyme RuBisCo and de novo biosynthetic pathways for a number of amino acids and nucleotides. Therefore, it is obligately symbiotic with its single-celled haptophyte algal host. UCYN-A receives fixed carbon from its host and returns fixed nitrogen, but further insights into this symbiosis are precluded by both UCYN-A and its host being uncultured. In order to investigate how this syntrophy is coordinated, we reconstructed bottom-up genome-scale metabolic models of UCYN-A and its algal partner to explore possible trophic scenarios, focusing on nitrogen fixation and biomass synthesis. Since both partners are uncultivated and only the genome sequence of UCYN-A is available, we used the phylogenetically related Chrysochromulina tobin as a proxy for the host. Through the use of flux balance analysis (FBA), we determined the minimal set of metabolites and biochemical functions that must be shared between the two organisms to ensure viability and growth. We quantitatively investigated the metabolic characteristics that facilitate daytime N 2 fixation in UCYN-A and possible oxygen-scavenging mechanisms needed to create an anaerobic environment to allow nitrogenase to function. This is the first application of an FBA framework to examine the tight metabolic coupling between uncultivated microbes in marine symbiotic communities and provides a roadmap for future efforts focusing on such specialized systems. 
    more » « less
  6. Abstract

    Persistent nitrogen depletion in sunlit open ocean waters provides a favorable ecological niche for nitrogen-fixing (diazotrophic) cyanobacteria, some of which associate symbiotically with eukaryotic algae. All known marine examples of these symbioses have involved either centric diatom or haptophyte hosts. We report here the discovery and characterization of two distinct marine pennate diatom-diazotroph symbioses, which until now had only been observed in freshwater environments. Rhopalodiaceae diatomsEpithemia pelagicasp. nov. andEpithemia catenatasp. nov. were isolated repeatedly from the subtropical North Pacific Ocean, and analysis of sequence libraries reveals a global distribution. These symbioses likely escaped attention because the endosymbionts lack fluorescent photopigments, havenifHgene sequences similar to those of free-living unicellular cyanobacteria, and are lost in nitrogen-replete medium. Marine Rhopalodiaceae-diazotroph symbioses are a previously overlooked but widespread source of bioavailable nitrogen in marine habitats and provide new, easily cultured model organisms for the study of organelle evolution.

     
    more » « less
  7. Abstract

    The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2 fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2 fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2 fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2 fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l−1 d−1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2 fixation rates were higher (151.1 ± 112.7 fmol N cell−1 d−1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell−1 d−1). N2 fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.

     
    more » « less
  8. null (Ed.)
    Abstract The microbial fixation of N 2 is the largest source of biologically available nitrogen (N) to the oceans. However, it is the most energetically expensive N-acquisition process and is believed inhibited when less energetically expensive forms, like dissolved inorganic N (DIN), are available. Curiously, the cosmopolitan N 2 -fixing UCYN-A/haptophyte symbiosis grows in DIN-replete waters, but the sensitivity of their N 2 fixation to DIN is unknown. We used stable isotope incubations, catalyzed reporter deposition fluorescence in-situ hybridization (CARD-FISH), and nanoscale secondary ion mass spectrometry (nanoSIMS), to investigate the N source used by the haptophyte host and sensitivity of UCYN-A N 2 fixation in DIN-replete waters. We demonstrate that under our experimental conditions, the haptophyte hosts of two UCYN-A sublineages do not assimilate nitrate (NO 3 − ) and meet little of their N demands via ammonium (NH 4 + ) uptake. Instead the UCYN-A/haptophyte symbiosis relies on UCYN-A N 2 fixation to supply large portions of the haptophyte’s N requirements, even under DIN-replete conditions. Furthermore, UCYN-A N 2 fixation rates, and haptophyte host carbon fixation rates, were at times stimulated by NO 3 − additions in N-limited waters suggesting a link between the activities of the bulk phytoplankton assemblage and the UCYN-A/haptophyte symbiosis. The results suggest N 2 fixation may be an evolutionarily viable strategy for diazotroph–eukaryote symbioses, even in N-rich coastal or high latitude waters. 
    more » « less